

Enhancement of bioavailability and efficacy of herbal medicinal products—A review

R Margret Chandira*, K Lokesh, P Monicka, P Palanisamy

Department of Pharmaceutics, Vinayaka Mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be University), Ariyanur, Salem, Tamil Nadu, India

Abstract

Herbal medicine has grown in popularity as a type of treatment. Although the distinctions between herbal and conventional pharmacological therapies, herbal medicine must be assessed for efficacy using standard trial procedures, and some herbal extracts have been shown to be effective for certain diseases. According to the World Health Organization (WHO), herbal medicine is used by 80 percent of the population in several Asian and African nations for some element of basic health care. Artemisinin, aspirin, digitalis, and quinine are examples of prescription medicines that have their origins in herbal treatments. People with chronic conditions including cancer, diabetes, asthma, and end-stage renal disease are more likely to utilise herbal treatments. Multiple characteristics, including gender, age, ethnicity, education, and socioeconomic status, have been linked to the usage of herbal medicines. Another important factor to examine is the herb's active components' bioavailability. A chemical must travel through the gastrointestinal tract and into the bloodstream before it may operate systemically. Surprisingly little is known about herbal components in this area. This review focuses on the Bioavailability enhancement and efficacy of herbal medicinal Products.

Keywords: herbal medicine, bioavailability, efficacy, bioenhancer

Introduction

Approximately 80% of the world's population uses herbal medicines for primary health care, particularly in underdeveloped nations. Plant-based medications and other botanicals have become increasingly popular in the West in recent years. Plant-based remedies dominated human medical practises until around two centuries ago. Herbal medicine, on the other hand, experienced a precipitous fall in the West as more predictable synthetic medications became widely available.

Many developing countries, on the other hand, continued to profit from the wealth of medical herbalism knowledge. Traditional medicines that predominantly use medicinal plant extracts for therapy are known as herbal pharmaceuticals. These pharmaceuticals are created from renewable raw materials using environmentally friendly procedures, bringing economic success to the people who grow these raw materials.^[4] Herbal medications are one of the simplest and cheapest approaches that scientists have developed to alleviate the problem. Herbs have long been used to cure a variety of ailments.

As the global use of herbal medicinal products grows and more new products are launched onto the market, public health problems and worries about their safety are becoming more prevalent. Although some herbal medications have a lot of promise and are extensively used, many of them haven't been evaluated and their use hasn't been supervised. This limits our understanding of their possible side effects and makes identifying the safest and most effective medicines, as well as promoting their reasonable use, more challenging.

Long before recorded history, plants were employed for medical purposes. As early as 3,000 BC, ancient Chinese

and Egyptian papyrus writings indicate medical benefits for plants. Herbs were employed in healing rituals by indigenous civilizations (such as African and Native American), and herbal therapies were used in traditional medical systems (such as Siddha, Ayurveda, Unani, and TCM).

Traditional medicines have a base in magical or religious beliefs, as well as popular experience, in every country, and the World Health Organization is working to create precise rules for clinical research methods and the evaluation of traditional medicine's effectiveness. Long-term usage of medicinal herbs allows for a restricted and partial selection of short and medium-term safe therapies, which, however, does not correspond to present concerns about synthetic drug interactions. Because of the diverse meanings of efficacy in relation to pathology and diseases in different cultures, treatment selection is often constrained.

Herbal Medicine^[9-11]

Herbal medicine (also known as herbalism) is the study of pharmacognosy and the application of therapeutic herbs, which forms the foundation of traditional medicine. There is little scientific evidence for the safety and usefulness of plants used in 21st-century herbalism, which often lacks purity and dose requirements. Fungal and bee products, as well as minerals, shells, and certain animal parts, are widely used in herbal therapy. Phytotherapy or phytotherapy are other terms for herbal medicine.

Traditional medicine (including herbal medications) has lately been described by the WHO as therapeutic approaches that have existed for hundreds of years before the establishment and spread of modern medicine and are still in use today. Traditional medicine is the culmination of

generations of indigenous medicine practitioners' therapeutic experiences. Medicinal plants, minerals, and organic matter, among other things, are used in traditional remedies. Herbal remedies are traditional medicines that primarily treat patients with medicinal plant formulations.

Many plants are used topically to treat the skin in various ways. Essential oil extracts are normally diluted in a carrier oil before being applied to the skin. When used straight, many essential oils can burn the skin or have a high dose; diluting them in olive oil or another food-grade oil like almond oil allows them to be used safely as a topical. Other topical administration techniques include salves, oils, balms, creams, and lotions. Herbal oil extractions are used in the majority of topical applications. Certain phytochemicals can be extracted into a food-grade oil by soaking herbs in it for weeks or months.

This oil can then be used to make salves, creams, and lotions, or it can simply be used as a topical oil. This method is used to make a variety of massage oils, antimicrobial salves, and wound healing chemicals.

Safety of Herbal Medicine^[12-23]

Herb consumption can have adverse consequences. "Adverse responses that are often life threatening or death have been caused by adulteration, improper formulation, or a lack of understanding of plant and medication interactions," according to the study. Before each plant can be used medically, proper double-blind clinical trials are required to prove its safety and efficacy.

Although many people feel that herbal medicines are safe since they are natural, herbal medicines and synthetic drugs can combine and produce toxicity in the user. Herbal therapies can be dangerously polluted, and herbal medicines with no proven efficacy may be mistakenly substituted for prescription medications.

Purity and dose standardisation are not required in the United States, although biochemical changes within a species of plant can cause even goods created to the same specification to differ. Plants contain chemical defence mechanisms against predators, which can be harmful or deadly to people. Poison hemlock and nightshade are two examples of severely deadly botanicals. They aren't sold as herbs to the general public since the dangers are well known, thanks to a long and colourful history in Europe linked with "sorcery," "magic," and intrigue.

Adverse responses to commonly used herbs have been observed, however they are uncommon. Herb consumption has been related to some major side effects on occasion. Chronic licorice eating has been linked to substantial potassium depletion, and as a result, expert herbalists avoid using licorice in cases where they believe this is a risk. A case of liver failure has been linked to black cohosh. There are few studies on the safety of herbs for pregnant women, however one study found that using complementary and alternative medicines during fertility treatment was linked to a 30% lower likelihood of continued pregnancy and live birth.

Quality and purity of Herbal Medicines are affected by following Factors^[24]

- Drug adulteration
- Imperfect preparation
- Incorrect storage
- Gross substitution with plant material

▪ Substitution with exhausted drugs

Chemical Components of Herbal Remedies^[25]

The absence of knowledge regarding the remedy's composition is another dark box of herbal-based therapies. Herbs are natural products and their chemical composition varies depending on several factors, such as botanical species, used chemotypes, the anatomical parts. European medicinal plants from traditional uses to scientific knowledge Medicinal plant Traditional uses Scientific knowledge Bergamot (*Citrus bergamia*) Fragrances, disinfectant, healer Photosensitizer, Mutagencancerous Chaste tree (*Vitex Agnus castus L.*) Anxiety, convalescence sexual sedative Premenstrual syndrome Coltsfoot (*Tussilago farfara L.*) Cough sedative Hepatotoxic and Mutagenic alkaloids Garlic (*Allium sativum L.*) Influenza and diarrhea, aphrodisiac and abortive. Used against parasites and witches Platelet antiaggregant. Hypolipidemic and hypotensive herbal remedy Greater celandine (*Chelidonium majus*) Hepatobiliary diseases (yellow latex for yellow bile) Hepatotoxic Germander (*Teucrium chamaedrys L.*) Depurative, digestive, slimming Hepatotoxic Marigold (*Calendula officinalis L.*) Hemmenagogus, liver depurative gastric ulcer, dysmenorrhea Hemollient and healer (only topic use) St Jhon's wort (*Hypericum perforatum L.*) Burns, gastritis, magical uses Antidepressant, Induction of CYP3A eCAM 2007;4(S1) 39 of the plant used (seed, flower, root, leaf, and so on) and also storage, sun, humidity, type of ground, time of harvest, geographic area; and merchandized products containing on the label the same product varying in their content and concentrations of chemical constituents from batch to batch; and even the same manufacturer can merchandize in different periods products containing different substances although standardized to achieve a high pharmaceutical quality. This heterogeneity might lead to substantial variations in pharmacological efficacy, posing pharmacodynamic and pharmacokinetic challenges.

Adverse and side effects are another open issue, because citizens still value everything that is natural tout court, more as a cultural-fashion choice than thinking that the patient is introducing chemical substances of vegetal origin into his or her body; not knowing that salicylic glucosides and lactonic sesquiterpenes of many Compositae are frequently responsible for allergic reactivity. The problem of medication interactions is not insignificant, especially for older patients using increasingly synthetic medicines; certain botanicals diminish or increase the bioavailability of various drugs by inducing or inhibiting cytochromes (St. John's Wort extracts, grapefruit juice, and so on). Furthermore, because many herbs have not been investigated in pregnant mice, using herbal extracts during pregnancy or lactation should be done under medical supervision.

Advances in high-throughput experiments have resulted in huge databases of genomic, proteomic, and chemical data, which may be utilised to identify active chemicals when combined with fast separation methods and strong spectrometric tools for identification and structure elucidation. To fully understand the pharmacological effects of natural products, a powerful and deep biological approach that integrates such large and diverse sources of information is required; and DNA microarrays may provide a suitable high-throughput platform for research and development of drugs from natural products. DNA

microarrays have three primary applications: pharmacodynamics for drug development, pharmacogenomics for side-effect prediction, and pharmacognosy for botanical identification and authenticity of crude plant materials as part of standardisation and quality control.

Bioavailability of Herbal Drugs ^[26-28]

Another important factor to examine is the herb's active components' bioavailability. A substance must travel through the gastrointestinal tract and into the bloodstream before it can operate systemically. Surprisingly little is known about herbal ingredients in this area. Compounds of the popular botanical goldenseal (*Hydrastis canadensis* L.), such as berberine and hydrastine, are virtually not absorbed after oral intake. All of the animal studies that showed a systemic effect used parenteral treatment of these alkaloids. Despite this, goldenseal is one of the most popular herbs, is highly advertised, and is largely recognised as a nonspecific immunostimulant by a misguided population.

Cinnabar has been used in traditional medicine for a long time. Inorganic mercury's toxicity is widely known, but because of its insolubility, it was anticipated that this product would not be absorbed considerably from the gastrointestinal tract. However, discovered a considerable rise in mercury levels in the liver and kidney after oral cinnabar absorption in mice. Concurrent use of cinnabar and medications containing bromides, sulphates, sulphides, nitrates, and iodine may increase the toxicity of the latter by increasing gastrointestinal absorption.

Bioavailability Enhancers ^[29, 30]

'Bioavailability enhancers' are drug facilitators; they are molecules that do not have typical drug activity on their own, but when combined with other molecules, they improve the activity of the drug molecule in a variety of ways, including increasing drug bioavailability across the membrane, potentiating the drug molecule through conformational interaction, acting as drug molecule receptors, and producing tar. A 'bioenhancer' is a substance capable of increasing the bioavailability and bioefficacy of a medicine when coupled with it, without having any pharmacological activity of its own at the dose used. Functional excipients added in formulations to facilitate the absorption of a pharmacologically active medicine are referred to as "absorption enhancers."

Piperine was discovered and scientifically proven as the world's first bioavailability enhancer in 1979 by Indian scientists at the Indian Institute of Integrative Medicine in Jammu, who created the phrase "bioavailability enhancer." Piperine, the active ingredient in *P. longum*, was isolated and its bioavailability-boosting properties were discovered. Antitubercular, leprosy, antibiotics, non-steroidal anti-inflammatory medications, CVS, and CNS medicines were all studied further.

Piperine has been discovered to boost the bioavailability of a variety of medications by 30 to 200 percent. It enhances curcumin bioavailability by nearly tenfold, according to further research. Piperine, on the other hand, did not raise the bioavailability of all medications, and the impact was inconsistent with some of them.

Ideal Properties of the Bioenhancers ^[31-33]

- It should be nontoxic, non-allergenic, and non-irritating, and it should not have any pharmacological effects of its own.

- Should have a fast-acting, predictable, and repeatable activity.
- The action should be unidirectional.
- Other active pharmaceutical components should be suitable.
- Should be consistent throughout time and in different environments.
- Should be simple to manufacture into several dosage forms.
- It should be simple to obtain and inexpensive.

Need for Bioavailability Enhancers

The principal limiting constraints for chemicals passing through the cellular membrane and being absorbed systematically after oral or topical administration are lipid solubility and molecular size. Several plant extracts and phyto components, despite having great bioactivity in vitro, have poor lipid solubility, incorrect molecular size, or both, leading in poor absorption and bioavailability in humans. When particular elements of a plant extract are isolated, it is frequently discovered that unique bioactivity is lost. When consumed orally, several constituents of the multi-constituent plant extract are destroyed in the stomach environment. They lower the dose, decrease the treatment time, and thereby lessen the risk of drug resistance. They make treatment more cost-effective by reducing drug toxicity and adverse effects through dose economy.

Various lipid technologies for enhancing bioavailability

The available lipids for enhancing bioavailability are liposomes,

- Micro-spheres,
- Nano-particles,
- Transferrosomes,
- Ethosomes,
- Nanoemulsions/ Microemulsions,
- Lipid based systems,
- Polymeric micelle formulation and
- Other novel vesicular herbal formulation.

Efficacy ^[34-40]

In a recent nationwide study, the ten most often used herbs in the United States were discovered, with 18.9% of the adult population reporting that they had used a herb to treat a medical problem in the previous year. The most popular application of echinacea is to cure the common cold. A recent comprehensive analysis found 16 randomised, placebo-controlled Echinacea trials, nine of which were favourable and seven of which were negative. The authors found that while there is some evidence of Echinacea purpurea's potential usefulness in the treatment of the common cold, the results are inconsistent. Echinacea angustifolia was found to have no benefit in the treatment of experimentally produced rhinovirus infection in a subsequent big, high-quality randomised controlled trial. Some experts believe that finding an impact would have been more likely if a different species (*Echinacea purpurea*) or a higher dose of the species investigated had been used. The plant is thought to be harmless, with previous research revealing that Echinacea and placebo groups had identical rates of side effects.

Ginkgo extracts are among the most well-studied herbal preparations, with flavonoids and terpenoids standardised to 24 percent and 6 percent, respectively. Despite mixed

findings in previous trials, ginkgo is likely useful for dementia, delivering a small advantage of about 3% in the Alzheimer's Disease Assessment Scale-Cognitive subtest. It's important to note that ginkgo wasn't found to improve cognitive function in elderly people without dementia. Ginkgo was found to enhance pain-free walking distance in individuals with claudication in a systematic evaluation of 8 previous trials, a minor benefit with questionable therapeutic value.

While the side effects of ginkgo and placebo are equal in clinical trials, the observed link between ginkgo and spontaneous bleeding is a major issue.

Ginseng is used in a variety of drinks and tonics in the United States to boost energy and physical or cognitive function. A systematic review showed no compelling evidence for efficacy of ginseng for physical performance, psychomotor performance, cognitive function, immunomodulation, diabetic mellitus, or herpes simplex type II infections in 16 randomised, placebo-controlled trials. Although there have been rare instances of increased arousal and hyperactivity, ginseng is thought to be safe.

Garlic is utilised for a variety of therapeutic purposes, although the majority of study focuses on its cholesterol-lowering effects.

Garlic decreases cholesterol levels by 4–6%, according to the most recent comprehensive study, which is a little effect compared to the 17–32 percent reduction observed with statin medicines. Gastrointestinal issues and garlic breath are the most typical negative effects. Garlic usage may raise the risk of bleeding, according to two case reports.

Peppermint is a common ingredient in herbal products marketed to treat irritable bowel syndrome. Despite the fact that a study of eight previous trials indicated a prospective advantage, the quality of the studies was insufficient to draw firm conclusions. The side effects appear to be rare and minor.

Ginger is widely used as an anti-nausea remedy. Only three previous randomised controlled trials looked at the efficacy of ginger for preventing postoperative nausea, and while two of them found a benefit, the combined summary of the three studies found no statistically significant advantage. Other uses for ginger include motion sickness, morning sickness, and chemotherapy-induced nausea, all of which have tentative but equivocal evidence of benefit. There are no side effects that have been reported.

Chamomile has been used for thousands of years to treat a variety of conditions. It's typically found in teas (as a moderate sedative) and herbal remedies for sleep disorders, anxiety, and gastrointestinal issues. For any of these indications, there are no high-quality scientific trials to support efficacy. Although the herb is usually thought to be safe, there have been reports of severe allergic responses.

Kava has long been used as a sedative and relaxation in the South Pacific islands. Clinical trials have shown a slight improvement in the treatment of anxiety. The reported link to many incidences of severe hepatotoxicity has limited the use of this herb.

Challenges Related to the Assessment of Safety and Efficacy^[42]

There is no denying that the requirements for evaluating the safety and efficacy of herbal medicines, as well as the research protocols, standards, and methods necessary, are far more difficult than those for conventional or orthodox

pharmaceuticals.^[41] Hundreds of natural ingredients can be found in a single herbal medicine or medicinal plant, and a blended herbal medical product can have several times that number. If every active ingredient in a herbal medication were to be separated from each individual herb used in its formulation or production, the time and resources necessary would be enormous. An analysis like this may be practically difficult, especially if the herbal product is a blend of two or more herbs.

Conclusion

Herbal medicines are the most extensively utilised treatment for ailments all over the world. Due to the huge and growing use of natural-derived compounds all over the world, herbal derived therapies require a powerful and thorough assessment of their pharmacological properties and safety concerns. Unfortunately, there is no proof of safety or usefulness for the majority of the over 20,000 herbal products available in the United States. However, given that plants are the source of one-third to one-half of all pharmaceutical medications, there is a clear opportunity to identify effective remedies in the natural world. Several minor adjustments to the regulations governing these items could vastly enhance herb usage. Bioenhancement technology is based on a standard medical system, although it is currently a fast evolving field. New drug development technologies are also fast evolving, however the economics of drug development are a source of concern. The bioenhancement technology would substantially increase the number of medications suited for disorders where drug quantities and doses are increasing. The bioenhancement technology would substantially increase the number of medications suited for disorders where drug quantities and doses are increasing. The researchers are currently working on ways to reduce drug dose and hence drug treatment costs, as well as make therapy available to a larger range of people, including those who are financially disadvantaged in the country.

Reference

1. Kamboj VP. Herbal medicine, Current science, 2000, 78(1).
2. Balammal G, Sekar BM, Reddy JP. Analysis of Herbal Medicines by Modern Chromatographic Techniques. International Journal of Preclinical and Pharmaceutical Research, 2012;3(1):50-63.
3. Mosihuzzaman M, Choudhary MI. Protocols on Safety, Efficacy, Standardization, and Documentation of Herbal Medicine, Pure Appl. Chem, 2008;80(10):2195-2230.
4. Kashaw V, Nema AK, Agarwal A. Hepatoprotective Prospective of Herbal Drugs and Their Vesicular Carriers- A Review, International Journal of Research in Pharmaceutical and Biomedical Sciences, 2011, 2(2).
5. Patil RB, Vora SR, Pillai MM. Protective effect of Spermatogenic activity of *Withania somnifera* (Ashwagandha) in galactose stressed mice, Annals of Biological Research, 2012;3(8):4159-4165.
6. (WHO). Traditional Medicine Strategy (2002–2005). WHO/EDM/TRM/2002.1. Geneva, Switzerland: World Health Organization, 2002b.
7. Ampofo AJ, Andoh A, Tetteh W, Bello M. Microbiological Profile of Some Ghanaian Herbal Preparations-Safety Issues and Implications for the

Health Professions, Open Journal of Medical Microbiology,2012;2:121-130.

8. Barnes LL. The psychologizing of Chinese healing practices in the United States. *Cult Med Psychiatry*,1998;22:413-43.
9. "Herbal medicine". Cancer Research UK. 2 February 2015. Retrieved, 2018.
10. Kamboj VP. Herbal Medicine. *Current Science*,2000;78:35-9.
11. Odinsonn E. Northern Lore: A Field Guide to the Northern Mind-Body-Spirit, 2010. ISBN 978-1452851433.
12. Talalay P, Talalay P. The importance of using scientific principles in the development of medicinal agents from plants. *Academic Medicine*,2001;76(3):238-47.
13. Elvin-Lewis M. Should we be concerned about herbal remedies. *Journal of Ethnopharmacology*,2001;75(2-3):141-64.
14. Vickers AJ. Which botanicals or other unconventional anticancer agents should we take to clinical trial?. *Journal of the Society for Integrative Oncology*,2007;5(3):125-9.
15. Ernst E. Herbal medicines: balancing benefits and risks". *Dietary Supplements and Health*. Novartis Found. Symp. Novartis Foundation Symposia discussion,2007:154-67(167-72):212-18.
16. Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. "DNA barcoding detects contamination and substitution in North American herbal products". *BMC Medicine*,2013;11:222.
17. Müller JL. Love potions and the ointment of witches: historical aspects of the nightshade alkaloids. *Journal of Toxicology. Clinical Toxicology*,1998;36(6):617-27.
18. Lee MR. Solanaceae III: henbane, hags and Hawley Harvey Crippen. *The Journal of the Royal College of Physicians of Edinburgh*,2006;36(4):366-73.
19. Pinn G. Adverse effects associated with herbal medicine. *Australian Family Physician*,2001;30(11):1070-5.
20. Lin SH, Yang SS, Chau T, Halperin ML. An unusual cause of hypokalemic paralysis: chronic licorice ingestion. *The American Journal of the Medical Sciences*,2003;325(3):153-6.
21. Lynch CR, Folkers ME, Hutson WR. Fulminant hepatic failure associated with the use of black cohosh: a case report. *Liver Transplantation*,2006;12(6):989-92.
22. Born D, Barron ML. Herb use in pregnancy: what nurses should know MCN. *The American Journal of Maternal Child Nursing*,2005;30(3):201-6.
23. Boivin J, Schmidt L. Use of complementary and alternative medicines associated with a 30% lower ongoing pregnancy/live birth rate during 12 months of fertility treatment. *Human Reproduction*,2009;24(7):1626-31.
24. Kamboj A. Analytical Evaluation of Herbal Drugs, Drug Discovery Research in Pharmacognosy,2012;3:23-55.
25. Chavan P, Joshi K, Patwardhan B. DNA microarrays in herbal drug research. *Evid. Based Complement. Alternat. Med*,2006;3:447-57.
26. Tyler VE. Phytomedicine: Back to the Future. *J Nat Prod*,1999;62:1589-1592.
27. Yeoh TS, Lee AS, Lee HS. Absorption of mercuric sulphide following oral administration in mice. *Toxicology*,1986;41:107-11.
28. Shaw D, House I, Kolve S *et al*. Should herbal medicines be licensed? *BMJ*,1995;311:452-3.
29. Atal CK. A break through in drug bioavailability- a clue from age old wisdom of Ayurveda. *IDMA Bulletin*,1979;10:483-484.
30. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar M N. Nanoparticle encapsulation improves oral bioavailability of curcumin by atleast 9-fold when compared to curcumin administered with piperine as absorption enhancer. *Eur J Pharm Sci*,2009;37:223-230.
31. Raut SV, Nemade LS, Desai MT, Bonde SD, Dongare SU: Chemical penetration enhancers: for transdermal drug delivery systems. *International Journal of Pharmaceutical Review and Research*,2014;4(1):33-40.
32. Patil UK, Saraogi R. Natural products as potential drug permeation enhancer in transdermal drug delivery system. *Archives of Dermatological Research*,2014;306(5):419-426.
33. Mirza ZM, Kumar A, Kalia NP, Zargar A, Khan IA. Piperine as an inhibitor of the MdeA efflux pump of *Staphylococcus aureus*. *Journal of Medical Microbiology*,2011;60(10):1472-1478.
34. Barnes PM, Powell-Griner E, McFann K, Nahin RL. Complementary and alternative medicine use among adults: United States, 2002. *Adv Data*,2004;343:1-19.
35. Dubber MJ, Kanfer I. High-performance liquid chromatographic determination of selected flavonols in *Ginkgo biloba* solid oral dosage forms. *J Pharm Pharm Sci*,2004;7:303-9.
36. Harkey MR, Henderson GL, Gershwin ME, Stern JS, Hackman RM. Variability in commercial ginseng products: an analysis of 25 preparations. *Am J Clin Nutr*,2001;73:1101-6.
37. Vogler BK, Pittler MH, Ernst E. The efficacy of ginseng. A systematic review of randomised clinical trials. *Eur J Clin Pharmacol*,1999;55:567-75.
38. Bent S, Goldberg H, Padula A, Avins AL. Spontaneous bleeding associated with *ginkgo biloba*: a case report and systematic review of the literature: a case report and systematic review of the literature. *J Gen Intern Med*,2005;20:657-61.
39. Ernst E, Pittler MH. Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials. *Br J Anaesth*,2000;84:367-71.
40. Pittler MH, Ernst E. Peppermint oil for irritable bowel syndrome: a critical review and metaanalysis. *Am J Gastroenterol*,1998;93:1131-5.
41. Zhou J, Ouedraogo M, Qu F, Duez P. Potential genotoxicity of traditional Chinese medicinal plants and phyto-chemicals: an overview. *Phytother. Res*, 2013. doi: 10.1002/ptr.4942 [Epubaheadofprint].
42. WHO. x National Policy on Traditional Medicine and Regulation of Herbal Medicines. Report of a World Health Organization Global Survey. Geneva, Switzerland: WHO, 2007, 154-67.
43. Sarukh VS, NAGOBA SN, Hindole SS, Kaudewar KD, More DR. Formulation and evaluation of herbal gel containing *allium cepa* extract. *Journal of Drug Delivery and Therapeutics*. 2019 Aug 15;9(4-s):492-6.