

Phytochemical screening and GC MS analysis of bioactive compounds from the acetone extract of *alternanthera bettzeckiana* leaves

V Gomathi^{1*}, Rani Sebastian², Babitha M C², K Radha³

¹ Professor, Department of Pharmacology, Vinayaka Mission's College of Pharmacy, Mission's Research Foundation (Deemed to be University), Ariyanur, Salem, Tamil Nadu, India

² Research Scholar, Vinayaka mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be University), Ariyanur, Salem, Tamil Nadu, India

³ Professor, Department of Pharmacognosy, College of Pharmaceutical Sciences, Medical College, Kottayam, Kerala, India

Abstract

Alternanthera bettzeckiana also known as calico plant belongs to Amaranthaceae family. The present study was designed to carry out the phytochemical screening of the different extracts of the leaves of *Alternanthera bettzeckiana* and identify the bioactive compounds present in the acetone extract using GC MS analysis. A total of 11 compounds were identified from the acetone extract of leaves. The main compounds identified are Phytol, 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol, Geranyl geraniol and Vitamin E.

Keywords: GC MS analysis, phytol, geranyl geraniol

Introduction

Discovery of new drugs is always very important to our health care system^[1]. Though remarkable success have been achieved in the discovery and development of various drugs for the therapy of several ailments, there is still need for further discoveries. This is due to the reason that some of the drugs currently in use possess one or more of the following drawbacks (i) high toxicity level (ii) low efficacy (iii) costly or (iv) inaccessible^[2]. Therefore, new drug discovery is very important. Drug discovery and development is a lengthy process which involves huge amount of money. Development of a new drug into a marketable therapeutic agent requires the effort of several years. The various sources of drugs include animals, micro-organisms, minerals, semi-synthetic/ synthetic and plant sources (herbs)^[3]. Due to several adverse effects that are associated with synthesized drugs, many pharmaceutical companies are now paying more attention to the development of drugs from natural sources. However, of the natural sources of drug, more focus has been placed on developing drugs from herbs than the others. Nowadays herbs are widely used for drug discovery and development. This justifies why most drugs currently in use are from herbs. Herbs in general, are plants or plant parts used due to their flavor, scent or medicinal properties^[4]. Digoxin, atropine, reserpine and colchicine are examples.

Recently, attention have been shifted to drug discovery by molecular modeling^[5]. The importance of herbs towards modern medicine development have been enumerated on various occasions. Apart from the direct use of plant derivatives as therapeutic agents, they can also serve as models for the design, synthesis or semi synthesis of other therapeutic agents. Therefore the scientific community invests much effort in step-up research effort on herb. Estimate has also shown that only a little percentage of herbs has been utilized for medicinal purpose. This goes to

show that there is still a lot more drugs that could be developed from herbal sources^[6].

Alternanthera bettzeckiana is a herbaceous plant belonging to the family Amaranthaceae. The genus is widespread with cosmopolitan distribution^[7]. A bettzeckiana Regel is also known as calico plant. The plant is used as an edible vegetable in Southeast Asia^[8]. The present work was carried out to identify the bioactive compounds present in the acetone extract of *Alternanthera bettzeckiana*

Alternanthera bettzeckiana is an erect and bushy or prostrate perennial herb with food and ornamental values. The leaves are green or reddish green and sometimes variegated. The shoots and tender leaves are used as vegetable and soups^[9]. The whole plant is reported to be useful in purifying and nourishing blood. The plant also Posses laxative, antipyretic and wound healing property^[10]. This genus consists of approximately 80 species and is widespread genus with cosmopolitan distribution^[11].

Synonyms

Alternanthera versicolor, *Alternanthera amabilis*
Telanthera bettzeckiana

Botanical name: *Alternanthera bettzeckiana*

Common name: Joy weed, Calico plant

Family: Amaranthaceae^[11]

Materials and Methods

Collection of the plant

The plant, *Alternanthera bettzeckiana* was collected from Pala, Kottayam district, Kerala. The plant was authenticated at Botanical Survey of India, and deposited in the herbarium with voucher No. BSI/SRC/5/23/2021/Tech/258

Chemicals and Reagents

All the chemicals and reagents were obtained from certified suppliers and of analytical reagent grade.

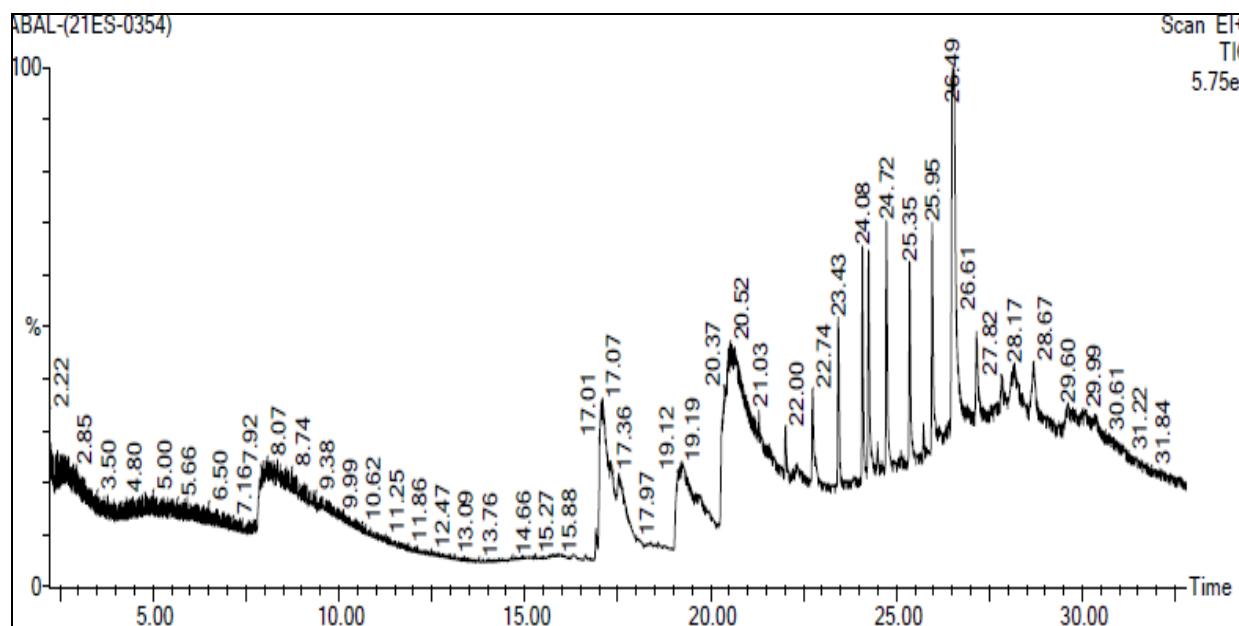
Preparation of the extracts

The plant extracts were prepared by Soxhlet extraction method [12]. The dried leaves of the plant and was ground to a powder using an electrical blender. Extraction was carried out by continuous hot percolation method by using the following solvents in order i.e. Petroleum ether, Chloroform, Acetone and Methanol. The extracts were then

concentrated using a rotary evaporator and kept at 4°C until used. These extracts were used for phytochemical screening.

Phytochemical screening

Phytochemical analysis of crude extracts of aerial parts of *Alternanthera bettzeckiana* was carried out as per standard procedures [13].


Table 1: Phytochemical screening of *Alternanthera bettzeckiana* leaf extract

SI No	Plant Constituent	PEE	CE	AE	ME
1.	Alkaloids	-	-		+
2.	Glycosides		-	-	+
3.	Steroids and triterpenoids	+	+	+	-
4.	Flavanoids	-	-		+
5.	Carbohydrates	+	+		+
6.	Phenolic compounds and tannins	+	-	+	+
7.	Proteins	-	+	+	+
8.	Saponins	-	-	-	-
9.	Fixed oils and fats	-	-	-	-

GC MS analysis

GC-MS analysis was done on the acetone extract of aerial parts of *Alternanthera bettzeckiana*. Shimadzu GC – MS

(Model Number: QP2010S) instrument with GC-MS solutions software was used for analysis. The oven temperature is maintained at 280°C at a rate of 5°C/min.

Elite - 5MS column of 30m length, 0.25mmID and 0.25 micrometer thickness was used.

Fig 1: GC MS Chromatogram

Table 2: GC MS Report

Peak	Retention time	Area	Area %	Name	Mol. Formula	Mol.Wt
1	17.094	49,235,828.0	15.091	Phytol	C20H40O	296
2	17.5 3	20,595,560.0	6.313	3,7,11,15-tetramethyl-2-hexadecen-1-ol	C20H40O	296
3	19.235	32,075,024.0	9.83	N-hexadecanoic acid	C16H32O2	256
4	19.600	6,830,527.5	2.094	Pentadecanoic acid	C15 H32 O2	242
5	20.521	84,131,896.0	25.787	13-tetradecene-11-yn-1-ol	C14 H24O	208
6	23.427	7,981,850.0	2.446	Heptacosane, 1-chloro	C27H55 Cl	414
7	24.242	11,303,557.0	3.465	Geranylgeraniol	C20 H34O	290
8	25.348	9,017,551.0	2.764	Hexatriacontane	C36 H74	506
9	26.508	50,121,952.0	15.363	Vitamin e	C29 H50 O2	430
10	27.144	7,687,286.0	2.356	1- octadecane sulphonyl chloride	C18 H37O2ClS	352
11	28.679	8,796,738.0	2.696	Cholesta-8, 24-dien-3-ol, 4-methyl-, (3.β.,4.α)-	C28H46 O	398

Results and Discussions

GC MS Analysis of acetone extract of the leaves of *Alternanthera bettzeckiana* revealed the presence of 11

compounds. Phytol is a diterpenoid compound and it is used as a plant metabolite, a schistosomicide drug and an algal metabolite.¹⁴Pentadecanoic acid is a straight-chain saturated

fatty acid containing fifteen-carbon atoms. It has a role as a plant metabolite, a food component, a human blood serum metabolite and an algal metabolite.¹⁵ Geraniol is a monoterpenic alcohol with a pleasant rose-like smell, known as an important ingredient in many essential oils, and is used as a fragrance compound in cosmetics and other products. Geraniol possess antioxidant and anti-inflammatory properties. Literatures reveal that geraniol has activity against prostate, bowel, liver, kidney and skin cancer. It can induce apoptosis and increase the expression of proapoptotic proteins^[16]. Vitamin E is an antioxidant and it protects body from damage caused by free radicals. Free radicals can harm cells, tissues, and organs. Vitamin E makes the immune system strong against viruses and bacteria. It is important in the formation of red blood cells. It helps them carry out many important functions.¹⁷ Octadecane is used as a solvent, in organic synthesis, and as a calibration standard^[18].

Cholesta-8, 24-dien-3-ol, 4-methyl-, (3. β . 4 alpha) - A 3 beta-sterol that consists of 4 beta-methyl zymosterol in which the 4alpha-hydrogen is replaced by a formyl group. It is a 3 beta-sterol and a steroid aldehyde. It derives from a zymosterol^[19].

Conclusion

GC MS Analysis of the acetone extract of *Alternanthera bettzickiana* revealed the presence of various bioactive compounds having antioxidant, anti-inflammatory and anticancer properties. Isolation of individual phytoconstituents and subjecting it to biological activity will give promising results. Therefore the plant can be considered as a source of lead compounds for the synthesis of newer drug candidates.

References

1. Si-Yuan Pan, Shu-Feng Zhou, Si-Hua Gao, and Kam-Ming Ko *et al.* New Perspectives on\ How to Discover Drugs. Drug Discovery and Drug Development of Herbal Medicines: CAM's Outstanding Contribution to Modern Therapeutics. Evidence- Based Complementary and Alternative Medicine, 2013.
2. World Health Organization (WHO). Drug Discovery and Drug Development, 2004.
3. Barden CJ, Weaver DF. The rise of micropharma. Drug Discovery Today,2010:15:84-87.
4. Petrovska BB. Historical review of Medicinal Plant's usage. Pharmacogn Rev,2012:6(11):1-5.
5. Kinghorn. Drug discovery from plants. Bioactive molecules and medicinal plants (Eds.) Kg Ramawt; J. - M, Merillon, 2008.
6. Enegeide Chinedu, David Arome, Solomon F. Ameh. Herbal plants a reliable source for drug discovery and development. Pharmatutor, 2013.
7. Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Berry. Anthocyanins as novel antioxidants in human health and disease prevention, Mol Nutr Food Res,2007:51:675-83.
8. Hundiwale JC, Patil AV, Kulkarni MV, Patil DA, Mali RG, A current update on phytopharmacology of genus *Alternanthera*, J Pharmacol Res,2012:5:1924-1929. 15
9. Quattrocchi U. CRC World Dictionary of Medicinal and Poisonous Plants, CRC Press, Taylor and Francis Group, Boca Raton, 2012, 214-215.
10. Petrus AJA, Kalpana K and Bharadha Devi A: Oriental J. Chem,2014:30(2):491-499.
11. Zafra Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinso, J A, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular Nutrition and Food Research,2007:51(6):675-583.
12. Gopalasathes Kumar K. Significant role of Soxhlet extraction process in phytochemical research. Mintage Journal of Pharmaceutical and Medical Sciences,2018:7(1):43-47.
13. Sofowora A. Research on medicinal plants and traditional medicine in Africa. J Altern Complement Med,1993:2(3):365-372.
14. Ivanov I, Petkova N, Tumbarski J. GC-MS characterization of n-hexane soluble fraction from dandelion (*Taraxacum officinale* Weber ex F.H. Wigg.) aerial parts and its antioxidant and antimicrobial properties. Naturforsch C J Biosci,2018:26:73(1-2):41-47.
15. Smedman AE, Gustafsson IB, Berglund LG, Vessby BO. Pentadecanoic acid in serum as a marker for intake of milk fat: relations between intake of milk fat and metabolic risk factors". The American Journal of Clinical Nutrition,1999:69(1):22-9.
16. Mączka W, Wińska K, Grabarczyk M. One Hundred Faces of Geraniol. Molecules,2020:25(14):3303.
17. Galli C, Socini A. Biological actions and possible uses of vitamin E. Acta Vitaminol Enzymol,1982:4(3):245-51
18. Asokan, Subashini; Krueger, Karl M, Alkhawalde. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology,2005:16(10):2000-11.
19. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol,2000:1(1):31-9.