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Abstract 
Agriculture plays an important role in a nation’s economic progress by not only feeding its population but also 
by providing rural employment, agriculture related export and fetching foreign exchange. Adoption of new 
technologies and interdisciplinary management approaches has significantly improved the agricultural produce. 
This study provides an insight into the application of several satellite remote sensing-based models that are used 
to quantify the crop yield. Further, it emphasizes on the need to develop a single or hybrid problem specific and 
user-friendly model. This may facilitate agriculturists and other stakeholders to identify the most reliable 
technique to ascertain the crop yield. 
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Introduction 
Humans and their live stocks are dependent on the agricultural produce to sustain their food necessities. With the 
ever-increasing numbers there is an immense pressure for a significant raise in the agricultural productivity. 
According to a food and agricultural organisation report 70% increase in the food production is required to 
satisfy the food demand of the world population by the year 2050 which is expected to be around nine billion 
(FAO, 2017) [8]. Food security is one of the several agendas of Sustainable Development Goals (SDGs) of United 
Nations. To add to the already existing woes, the unprecedented attacks of corona virus and the mass migration 
of workers during lockdown has impacted the agricultural sector. Specifically, the post-harvest crop management 
has taken a severe toll.  
Globally, the lack of any standard dataset due to different agroclimatic conditions, crops and agricultural 
techniques makes the crop management even more difficult. All the intrinsic qualitative and quantitative 
parameters affecting the yield are known by use of several methods and thereby eliminate several unnecessary 
times and cost consuming processes. The authors through the current review shed light on some of the most 
commonly used satellite remote sensing-based methods of crop yield prediction and critically analyse their 
strengths and weakness. 
 
Satellite Remote Sensing based methods 
In 1970s the Satellite Remote Sensing approach was the newest technique on the block and was seen as a 
potential method to enhance the agricultural statistics world over. Remote sensing (RS) data is an assemblage of 
the several atmospheric, geometric and field data taken remotely from a high position above ground. The data is 
stored and analysed to gain agronomically important biotic and abiotic information like the nutrient status of the 
field, weed or pest infestation, water status, damages due to winds hail and chemical. The analysis is done by 
comparing the spectral signatures of crop species in the study area with that of a healthy plant. The spectral 
signature is based on the vegetative index, the most common being the NDVI i.e. the normalised difference 
vegetative index. The spectral, spatial, radiometric and temporal resolutions influence the selection of the remote 
sensing system. 
Among the various methods to estimate the crop yield of satellite remote sensing based methods are gaining 
popularity. Though it is not a very new concept but to attain precision and accuracy several operational models 
were proposed from time to time. In 1960s the aerial remote sensing techniques were bettered by the satellite 
remote sensing with Explorer, Television Infrared Observation satellites (TIROS series) corona and series of 
Landsat’s (Lettenmaier et al., 2015) [22]. Major agricultural crops like rice, wheat, sugarcane and maize are 
monitored for their productivity via the space borne satellite remote sensing. Various morphological, 
biochemical and biophysical factors are studied as crop growth parameters called the vegetation indices. The 
satellite remote sensing generated spectral data has been utilised in agricultural programmes for several crop 
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studies, problems associated with crop inventories and accurate yield predictions and development of models 
(Sahai et al., 1988) [34]. The remote sensing methods relied on the weather forecasts, clouds, radiations of various 
wavelengths focusing on the development of algorithms.  
 

 
 

Fig 1: Various vegetation indices used for estimation of different parameters developed for canopy and leaf 
scale. PRI-photochemical reflectance index, GI- green index, TCI- temperature condition index, CCCI-Canopy 

chlorophyll Content Index MTVI- Modified triangular vegetation index, CARI- Chlorophyll absorption 
reflectance index, MCARI- Modified CARI, TCARI- Transformed CARI, RARSb- Ratio reflectance of 
reflectance spectra, NDRE-normalised difference red edge RVI- Ratio vegetative index, HS-Hansen & 

Schjoerring, EVI- Enhanced Vegetative Index, EVI2- Enhanced Vegetative Index 2, GR- green ratio, BS- 
Blackburn & Steel, WDVI- weighted Difference vegetation index, PVI- Perpendicular vegetation index, SAVI- 
soil adjusted vegetation index, MSAVI- modified SAVI, OSAVI- optimised SAVI, TSAVI- transformed SAVI, 
VCI- vegetation condition index, NDVI- normalised difference vegetative index, GNDVI-, VARI green- Visible 

atmospherically resistant index, VARI 700- Visible atmospherically resistant index 700 nm, DL_DGVI- First 
order derivative of the green vegetation index using local baseline, DZ_DGVI- First order derivative of the green 

vegetation index using zero baseline, GIT 1-3- Gitelson1-3, Datt 1-3 (Cammarano, 2014) [5] 
 
In the recent years, the focus shifted towards data use. A comparison of satellites with optical/thermal sensors, 
satellites with active microwave sensors satellites with passive microwave sensors, satellites that measure the 
gravity field on the basis of special and temporal resolutions was performed to studying their impacts on various 
agriculture aspects (Karthikeyan et al., 2020) [19]. 
The remote sensing-based methods can further be classified into methods as described in the following 
subsections. 
 
1. Regression based methods 
Literature shows that vegetable indices give an idea about crop’s expected yield on the basis of accurate and 
reliable data processing. The estimation using this technology rely on reliable and accurate quantitative 
processing of the data like type of crop, edaphic and climatic factors via regression and machine learning 
techniques(Fang et al., 2019) [7]. A regression relationship is drawn between the crop yield and vegetable indices 
which can then be used in future yield indications using fresh data from the vegetative features (Karthikeyan et 
al., 2020) [19]. 
The gross primary productivity GPP, Net primary productivity, leaf Area Index LAI, Solar Induced Chlorophyll 
Fluorescence SIF are indicators of crop growth and yield. NDVI is the most common index. Some other indices 
are also used by different researchers like EVI-Enhanced Vegetation Index (Liu et al., 1995) [24], NDVI-
Normalized Difference Water Index (Gao 1995) [10], EVI2-two-band EVI (Jiang et al., 2008) [16],GRVI-Green-
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Red Vegetation Index (Motohka et al., 2010) [29], MODIS NDVI data with air temperature values from 
MERRA2 reanalysis product (Skakun et al., 2019) [35] and spatio-temporal variations in the crop frequency using 
MODIS NDVI and EVI data along with ancillary information (Tao et al., 2017) [37].  
Different workers have compared different vegetative indices and have preferred one over the others for their 
respective crops. From NDVI (Lai et al., 2018) [21], AVHRR (Advanced Very-High-Resolution Radiometer) 
NDVI(Quarmby et al., 1993) [32], AVHRR VCI Vegetation Condition Index (Liu and Kogan, 2002) [25] to use of 
Landsat 8 Operational Land Imager (OLI) NDVI values (Mirasi et al., 2019) [28] have been used for wheat yield 
prediction. Of various techniques like partial least square regression (Hansen and Schjoerring, 2003) [13], ANN-
artificial neural networks (Johnson et al., 2016) [17], support vector machines (Tuia et al., 2011) [41] and random 
forests was adjudged the best to predict the LAI of rice (Wang et al., 2018) [42]. On the basis of past works it may 
be concluded that the shortcoming of this method is its site dependency that is suitable and effective for local 
studies with study of few variables. 
 
2. Physics based method 
The physics-based methods adopt the biophysical processes like the leaf optics for the modeling purpose. 
Jacquemoud and Baret (1990) used a radiative transfer PROSPECT model that utilises the information such as 
the leaf anatomy, amount of pigment, water and dry matter. This model simulates the leaf optics in the 400nm to 
2500 nm range of wavelength. Now its modified versions PROSAIL-4 and PROSAIL-5 are also available (Feret 
et al., 2008) [9]. The oversight in the data is minimized by involvement of model inversion (Li et al., 2015) [23]. 
Despite its advantages in applicability over a greater scale, this method too has its limitation in the form of 
equifinality that leads to optimality. Several scientists propose the inclusion of prior knowledge to solve this 
problem. 
 
3. Assimilation of RS data in crop simulation models 
A hybrid of physics-based model and the crop simulation model can come to the rescue for the problems specific 
to either model if used alone. The former employs soil parameters for a particular crop. On the other hand, the 
later not only uses the agronomic and edaphic conditions but also relies on the meteorological data and farming 
practices.  
Several crop simulation models have been used spanning last few decades. Hoogenboom and co-workers (2019) 
recently used DSSAT-decision support system for agrotechnology transfer. WOFOST- World food 
studies(Diepen et al., 1989) [6], EPIC- Environmental Policy Integrated Climate Model (Williams et al., 1989) 

[43], CERES- Crop environment resource synthesis (Ritchie et al., 1989) [33], Daisy model (Abrahamsen and 
Hansen, 2000) [1], Aqua crop model (Steduto,2009) [36], SWAP model- Soil, Water, Atmosphere and Plants 
(Kroes et al., 2009) [20] and MONICA- model for nitrogen and carbon dynamics in agroecosystems (Nendel et 
al., 2011) [30]are some of the other commonly used techniques. 
The application of crop models has its own challenges when used for large fields as huge data is required. These 
problems can be handled using remote sensing methods. These two can be assimilated for an efficient output in 
the following two ways- either the crop growth variables maybe substituted by the simulated variables or the 
former maybe used to tweak the later, thereby altering the output.  
Under heavy cloud conditions the remote sensing models prediction based on optical images maybe 
compromised. Now-a-days better signals from a multi satellite missions like Sentinel, Sentinel-2 etc. provide 
better optical and radar images though with their own limitations like saturation effect in calculating various 
vegetation indices (Thenkabail, 2000) [38]. Assimilating the crop variables based on the satellite images with the 
crop simulation models researchers have estimated the crop yield in several crops. The predictions are subject to 
the environmental conditions of the region, the farming practices employed, the biophysical variables 
considered. The major limitations being that the analysis is based on the data accumulated over a period of 
different developmental stages using multiple VI’s which may not be optimal individually for all the stages 
(Kamenova and Dimitrov, 2020) [18]. The authors while using Sentinel-2 data concluded that inadequate temporal 
and spatial resolution of data limits its crop productivity predictions. They advised to use these data sets with 
appropriate care and indicated preference for UAV (unmanned aerial vehicle) based approaches to assess the 
Sentinel-2 data. 
 
4. RS of plant photosynthetic activity 
Satellite remote sensing has enabled crop monitoring over large areas. It uses different spectrum wavelengths. 
The inference related to the GPP is based on the correlation between the structure of the plant and reflectance. 
Since the biomass is an integral part of the yield therefore any parameter indicating towards it may be utilised for 
yield predictions. The vegetative indices based on optics may lead to a calibration error and thus flawed yield 
projections. In the ecosystems that have seasonal variation in light use efficiency and that show variation with 
respect to the carbon assimilation due to climate change, predicting the productivity is quite challenging. 
Therefore, several remote sensing parameters like LST (Land surface temperatures), NDVI, EVI (enhanced 
vegetation index) and NIRv (near infra-red reflectance of vegetation) fail to detect the GPP seasonal variation. 
The SIF- Solar Induced Fluorescence data, being a measure of photosynthetic activity, is considered a promising 
option to indicate crop productivity (Guan et al., 2016) [11]. The physics-based models like SAIL (Miller et al., 
2003) [27] and its modification SCOPE- Soil Canopy Observation, Photochemistry and energy fluxes model can 
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retrieve the SIF data (Tol et al., 2009) [40]. Another light use efficiency model to which SIF is related is the 
fPAR-fraction of photosynthetically active radiation. It gives the estimates of CO2 fixed through photosynthesis 
and is derived from satellite remote sensing. fPAR can be obtained from whole canopy or from the leaves 
(Bastiaanssen and Ali, 2003) [2]. Though the estimation based on the two would be quite different. To get 
precision, the fPAR needs to be coupled with other model that could enhance the GPP-Gross Primary 
productivity. GPP is critical for understanding the C-cycle and ecosystem functions. SIF is indirectly used as a 
measure of the GPP as it is capable of capturing the seasonal variance in gross primary productivity (Magney et 
al., 2019) [26]. Peng and coworkers (2020) used high resolution SIF to predict maize and soybean yield. They 
suggested the need of improved SIF data with better resolution and quality for yield estimations as according to 
the authors in its present state satellite based high resolution SIFs role in yield estimation is ambiguous and not 
much better than other remote sensing approaches. Recently, Cai and group (2019) employed SIF products to 
estimate the yield of wheat and found out that due to coarse resolution in the satellite-based SIF results it was 
inferior to the EVI input which performed better. Therefore, it would be an exaggeration to credit this method as 
the one with better projections of crop yield while benchmarking it against many other available methods. 
 
5. Microwave data-based methods 
The microwave data uses microwaves for the environment forecasting with wavelengths between 1mm to 1m 
which can penetrate the cloud, haze, dust and fog cover, thus making it possible to obtain data in any weather 
condition except in heavy rains. These are of two types-the active microwave and the passive microwaves. The 
active captures the radiations emitted by the objects surface in daytime and the passive are the transmitted ones 
and independent of the light source. The two can be complementary to each other as one is based on the 
backscattering and the other is based on the optical depth of vegetation (Guan et al., 2017) [12]. The passive 
microwaves find use in hydrology meteorology and oceanography (Calla, 1990) [4]. Several researchers from the 
1990s to the first decade of the twenty-first century have used the microwave - based determination of primary 
productivity that indicates the crop yield. The morphology and canopy variables play a vital role in this model. 
But as is the case with most models this also have its weaknesses. The major being the coarser resolution and 
impact of vegetation on measurements. 
 
Conclusion 
The crop yield estimation is an important aspect of farming. Globally various crop yield estimation techniques 
are being used. Nevertheless, there is no consensus amongst the researchers on any one method that fulfils all 
requirements and can serve as a universal model. Each method comes with its own operational constraints. The 
selection of a method is based on specific objectives, area under consideration and the precision required. 
Remote sensing-based models with variations in the supplementary methods are the most promising of all. 
Despite its own lacking, it is still the most favoured technique. The compensation for the low resolution is 
offered by several others like statistical and mathematical models. Artificial Intelligence algorithms are assisting 
and improving the present-day methods and providing the farmers and stakeholders a better insight into the 
agricultural systems. The authors through this work highlight the need to generate more informative and hybrid 
model(s) that will probably eliminate the local, regional and global biases in precise yield prediction. 
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